E -Bike Frame

1

ME3 DMT Seminar

Group 1A:

Mingquan **Cheng** Rohhil **Chhabra** Zhongtian **Huang** Theo **Hales** Rohit **Nag**

Supervisors:

Dr Liliang **Wang** Xi **Luan**

**Imperial College
London**

Seminar Structure

1. Final Product Overview

• *Key design features*

4

• *General specs*

Key Design Features & Specs **Frame**

- *Columbus Omnicrom steel tubing top-tube, inner seat-tube, seat-stays, chain-stays*
- *Mild steel custom tubing head-tube, down-tube, seat-tube*
- *Brazed joints*
- *Designed for riders 5'8" – 6'8"*
- *Weight: 5.8kg*
- *Comfort riding geometry*
- *Suited for urban terrain conditions*

Key Design Features & Specs

Dropouts

- *12mm OD, 142mm length THRU axle compatibility*
- *Flat mount disc brake callipers compatibility*
- *Total 1.8cm chain tensioning adjustability*

3 Component Design:

- *Custom laser-cut stainless steel black plates*
	- *brazed to main frame*
- *Custom CNC aluminium inserts*
	- *socket head screws – quick adjustment*

Key Design Features & Specs
Brakes

- *Shimano flat mount disc brake calipers*
- *160mm diameter center-lock rotors*

Wheels

- *700cc (622mm) OD, 25mm width, aluminium alloy rims*
- *142mm wide integrated freehub for sprockets*
- *12mm THRU axle*

Key Design Features & Specs

Seats / Seat tube

• *27.2 mm internal diameter seat tube to be compatible with industry standard seat tubes*

Bottom Bracket

- *68 mm long 40 mm diameter bottom bracket*
	- *Compatible with motor team's torque sensor*

2. Design Requirements

- *Initial inter-group PDS*
- *Revised inter-group PDS*

Revised Inter-group PDS *UK Laws & Regulations*

- *Aged* ¹⁴ *or over with e-bikes meeting requirements*
- *EPACs: ''electrically assisted pedal cycles"*
	- *license not required for usage, no need for registration, tax or insurance*

UK Laws & Regulations What Counts as EPACs?

- *Pedals to propel*
- *Pedal must be in motion for motor assistance*
- *Show either power battery's voltage or maximum speed*
- *Motor max output = 250 W*
- *not able to propel when speed > 15.5 mph*
- *Can have more than 2 wheels (e.g. tricycle)*

3.

Intergroup Project Division

- *Sub-group allocations*
- *Integration with the frame*

- Handlebar
- Front fork
- Headset assembly
- Front disc brakes

Frame Isolation

Static loading scenario

Frame PDS

22

Frame PDS

Important points

4. Planned Approach

- *Project roles*
- *Planned timeline*
- *Gantt chart*
- *Collaboration and workflow*

Project Roles

Rohit

-Project Manager -Design -CAD -Manufacturer communications

Theo

-Minutes -Document organisation -Finite element analysis -Test liaison

Rohhil

-Reporting -Material selection -Test development -Document quality control -Intergroup communications

Mingquan

-Budgeting and finance -Procurement -Literature Research -Testing Iterations

Zhongtian

-Evaluation -Stress Analysis -Formatting

5. Design & Evaluation Phase

- *Conceptual design*
- *Design challenges*
- *Finite element analysis and iterative design*

Research: Inspiration: Concept Sketching:

Market Research & Conceptual Design

Features:

- *Integrated battery*
- *Integrated motor housing*

Problems:

- *Large stress concentrations*
- *Hard to manufacture*

Features:

- *Box section downtube*
- *Aluminium alloy construction*
- *Standard bottom bracket*

V1.2

• *Top tube intersection unnecessary*

V1 critical layout dimensions

Features:

- *Main tubes are stocked parts*
- *27.2mm seatpost*

Problems:

- *Chainstays expensive to manufacture*
- *No bridge support between stays*

Features:

- *All tubes (including stays) are stocked parts*
- *Bridges between stays to support lateral pedalling loads*

Problems:

- *Seatstay will buckle under nominal loads*
- *Motor mounting solution lacking*
- *Track dropouts:*
	- *No support for disc brakes*
- *Aluminium: hard to work with*

Features:

- *Custom geometry*
- *Sliding dropouts*
- *Disc brakes*
- *Plated mounting tabs*
- *Omnicrom steel Columbus tubing*

Problems:

V

2622.0mm

- *Mounting tabs are hard to weld*
- *Bolted joining is not preferred*

V2 critical layout dimensions (BikeCAD)

Initial Stress Evaluation based on script

Method:

- *Assumed the components to be 2D truss elements*
- *Derived stiffness matrix*

Initial Stress Evaluation (based on script)

- *The FEAA method is implemented by the code in MATLAB*
- *Several advantages throughout the conceptual design stage*

Dropouts

- Analysed separately to the frame, found to have a minimum safety factor of 4.3 (above the PDS value of 3; screenshot b)
- Initially designed to be produced entirely by CNC
- Redesign for manufacturability made into laser -cut components which were produced individually then joined to give the required shape. (Screenshots c & d)
- Final component shown in Screenshot (a).
- Dropout redesign lowered total cost by \sim 3 times.

atudy name: Bukq Ioad(-Default-) 'ot type: Static nodal stress Stress1

Finite Element Analysis

- SF predicted to be high in this load case, so strong with the rider on the bike.
- Max stress predicted at dropout joint, stress concentration due to weld path and cut in tubing.
- Linear trends expected in all data sets with mass (one graph for example)
- Low strains imply little deformation expected in the frame

FEA: Stress concentration sites

- Screenshots show left seatstay above dropout with cut and increased areas of strain.
- Both this and a site on the chainstay were considered as they had higher stresses (therefore higher strain values).
- The top screenshot shows the low safety factor (due to a stress concentration) at the cut in the seatstay .

6. Budgeting and Manufacturing

- *Manufacturers*
- *Financing*

Budgeting

- *Over £1000 quickly, extra funding application needed*
- *Mainly spent on tubing and self-designed parts (axle, insert, dropouts)*
- *Final approved budget was £2834.89 including testing costs and shipping*

Expenditure Distribution

Detailed Budgeting

Outsourcing Frame Manufacturing

• *Over 40 workshop & contractors contacted*

- *most do not have the ability or time to weld/braze the bike frame*
- *Bicycle Academy chosen as manufacturer*
	- *professional industrygrade bike frame fabricator*

How we cut down the budget?

- *Reduced testing to only static loading*
- *Avoid painting as strain gauges need to be put onto the frame*
- *Dropout: CNC to laser-cut, less complex shape*

Manufacturing Timeline

Manufacturing Timeline

7. Testing

- *Test set-up*
- *Results*

Test Development

Iteration 1 - British Standards

- *Fatigue (Horizontal and Vertical Forces)*
- *Impact*

Issues

- *Long duration*
- *Resource Heavy*

Drawings from British Standard BS EN 15194:2017, BSI (2017) [3]

Available from : https://bsolbsigroup-

com.iclibezp1.cc.ic.ac.uk/Biblio graphic/BibliographicInfoData/ 000000000030384746

Test Development

Iteration 2 – Self Developed

Test 1: Chain stay and Dropout Fatigue

Test 2: Box Section Seat Tube Buckling

Test 4: Top Tube Impact Fracture

Test 5: Down Tube Brazed Joint Pedalling Fatigue

 π

Issues

- *Long duration*
- *Unavailability of test rigs*

Test specification

- *Masses were applied in 20 kg increments from 0 kg to 60 kg then in 5 kg increments from 60 kg to 100 kg*
- *Design weight is 80 kg so this is exceeded to test the strength of the frame*

Test specification

- *Sites chosen for strain gauges*
	- *dropout join at chainstay and seatstay (identified as stress concentration area by FEA) and down tube, top tube for reference and comparison at relatively un-stressed areas*
- *6 strain gauges used; one broke during soldering (chainstay hoop orientation)*
- *Strain is measured to avoid excessive deformation and compare with FEA predictions*
- *Advisory limiting values provided to avoid deformation*

Test setup

Yellow dots show strain gauge sites.

- Set up in a bike stand for support with masses suspended from hangers via a bar attached to the saddle.
- Strain gauges connected to Madaq 16 and data recorded at each load.
- Voltage data shown by Madaq, so strains could not be compared during test

Test setup

- Not painted to avoid interference with strain gauge adhesion.
- Progressed up to 85 kg until the stand began to deform the bike did not, and experienced no damage or wear.

• At 40 kg, the bar supplied from the stores bent significantly so a new one was sourced.

Results

- Linear trends broadly observed across data, as expected, although magnitudes differ to FEA.
- Likely due to strain gauges being applied by less experienced GTA.
- Validates FEA as trends are as predicted.

Average strain vs Mass, all components

Strain vs mass predictions - all components (RMS)

- Relative sizes of strain values in each component could be improved by higher-resolution FEA.
- Strains also seem very high in test data; did not correspond to the low level of deformation in the frame.
- Measurements in V rather than mV, noise in software.

Results – Raw Strain Data

Voltage readings converted into strain values using a similar method to fairground lab;

56 *Strain* = $\frac{4 \times voltage \text{ reading at gauge}}{Bridge \text{ voltage} \times gauge \text{ factor}}$. Equation from National Instruments Application Note on strain gauges, 1998. [4]

Results – Transfer Strain to Stress

• The stresses would have caused the frame to fail if they occurred in testing

Results – Confidence Interval for the data

Small size of data but with large fluctuations so the average value might not be very accurate

The 95% Confidence interval method is used to indicate the range that the true value of measurement mostly likely falls in, useful to estimate the magnitude of stresses

8. Future Considerations

- *Improvements*
- *What could have been better?*

Future design progression

Short term:

- *Painting*
- *Change dropouts (next slide)*

Long term:

• *Lighter with more budget*

• *Additional integration with other groups*

• *Re-dimensioning parts for greater strength during manufacturing*

• *More specialised materials (eg carbon fibre)*

Max: 2.087e +08

▲ Pre-test analysis

• *Von-misses stress* safety factor ≈ 1.1

Dropouts - Stays Interface Problems

- *Too many stress raisers*
- *Complex cuts required*
- *Low weld joint strength*

Redesign for the future

Current Dropouts Problems

Problems:

- *Stress raisers*
- *Complex assembly*
- *Unique components*

Redesigned Dropouts

References

- 1. GOV.uk. (n.d.) *Electric bikes: licensing, tax and insurance.* Available from: https://www.gov.uk/electric-bike-rules
- 2. Ulrich Hansen. (2020). Finite Element Analysis and Applications Lecture Notes. *Mechanical Engineering Department, Imperial College London.*
- 3. BSI, (2017). BS EN 15194:2017 *Cycles – Electrically power-assisted cycles - EPAC bicycles*, *BSI Standards Publication.* Available from : https://bsol-bsigroupcom.iclibezp1.cc.ic.ac.uk/Bibliographic/BibliographicInfoData/000000000030384746
- 4. Strain Gauges and Wheatstone Bridge Measurements.pdf. Blackboard.com, adapted from Measuring Strain with Strain Gauges. *National Instruments Application Note (1998)*. p78.

Thank you for watching!

Any questions?